Modelling the coupled surface water and groundwater system of the Upper Rhine Graben

VULNAR project

C. Thierion, F. Habets, E. Ledoux, P. Viennot, E. Martin, S. Queguiner, P. Ackerer, S. Majdalani, E. Leblois, S. Lecluse
The Upper Rhine alluvial aquifer: geographical and geological context

SAFRAN annual precipitation (1970-2007)
The Upper Rhine alluvial aquifer: an important and vulnerable resource

- Groundwater resource: 45 billions m3
- Absence of an impermeable cover
- Strong connection to the hydrographic network
- Water stock strongly linked to river water infiltration

Vulnerability to surface pollution and climate change

Source: MONIT
Functionning of the aquifer system

- Recharge processes: effective rainfall, river infiltration, lateral subsurface flow

- Several regional models built in the past (MONIT, LIFE project):
 - Limited to the plain part of the hydrosystem
 - Relative importances of the different processes are not well constrained
Three different modeling approaches

- **HPP-INV**: Finite elements method, inversion of hydrodynamic parameters
- **MODCOU**: Finite differences method, Spatial extension including the mountainous areas
- **SIM**: Identical to MODCOU for the aquifer part, Different approach of the soil water budget

Hydrogeological modelling – VULNAR project

- Infiltration rate
- Hydrodynamic parameters
- Direct evapotranspiration from the water table
A new regional model with water budget computations on mountainous catchments is built:

- Spatial extension to the mountain catchments
- Validation of the water budgets with river flow data
- Water losses from these catchments to the alluvial aquifer are assessed

Sensitivity tests of the model to different parameters:

- Transfer coefficients between the aquifer and the rivers
- Maximum infiltration rate from the rivers
- Transmissivity
- Rivers water levels
Coupled model MODCOU: principles

Forcing data: meteorology / PET - precipitation

Structure data:
- Physiographic parameters:
 - Elevation
 - Soil types
 - Land use

Hydrodynamic parameters:
- Transmissivities
- Drainage
- Specific storage

Surface module:
- Storage
- Infiltration

Groundwater module:
- Unsaturated zone

Surface runoff

Evaporation (AET)

Hydrographic network

Water table – rivers relations

Piezometric levels

Aquifer
Area discretisation

- Grid: square meshes 200 to 1600 m
- Alluvial aquifer: single layer
Surface water budgets area distribution

- Production functions: parameterization of the water budget for each surface mesh
Hydrodynamic parameters distribution

- Transmissivity values
 - From the HPP INV model (Majdalani et al., 2009)
 - See P. Ackerer, plenary lecture IX

- Sensivity tests conducted on several parameters
Coupled simulations

![Water exchange fluxes graph]

Average exchange flow (m3/s)

-0.050 - 0.033
-0.032 - 0.010
-0.009 - 0.000
0.001 - 0.010
0.011 - 0.050
0.051 - 0.200
0.201 - 0.510

- Modeled area
- Alluvial aquifer
- Hydrographic network

![Map with water exchange flow distribution]
Sensitivity tests

- Temporally variable water levels in the Rhine river

![Graph showing water levels and flow models with bias and RMSE values]

- Bias = 0.6 m, RMSE = 0.16 m
- Bias = 0.21 m, RMSE = 0.39 m

Legend:
- Red: Variable water levels and flow model
- Green: Steady water levels and flow model
- Black: Observed

Map showing locations 127-065-1 and 03784X0022.
Parameters comparison criterion

- Aquifer stock variations comparison

- A mean to compare globally the different simulations

- No good criterion found with the biases and RMSE on piezometers

- Piezometric data analysis by Longuevergne et al. (WRR, 2007)
 - stock variation computed from data

- Comparison with stock variations obtained from simulations
Aquifer recharge processes

- Water budget for the recharge of the alluvial aquifer
Conclusion and perspectives

- The Upper Rhine hydrosystem is strongly influenced by interactions between the alluvial aquifer and the hydrographic network
- Simulations show the importance of a good estimation of river stages
- Interest of the mathematical analysis method of piezometric data for models’ results comparison

- On going comparison between different modeling approaches in the VULNAR project
- Understanding of the different recharge processes: enriched statistical analysis
- Vulnerability study with the use of climatic model outputs under different scenarii

- Project website:
 http://www.geosciences.mines-paristech.fr/equipes/systemes-hydrologiques-et-reservoirs/vulnar